Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the Human Apical Papilla via the Processes of Mechanosensing and Mechanotransduction

Por um escritor misterioso
Last updated 20 setembro 2024
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Substrate Stiffness and Composition Specifically Direct Differentiation of Induced Pluripotent Stem Cells
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Histone Modification of Osteogenesis Related Genes Triggered by Substrate Topography Promotes Human Mesenchymal Stem Cell Differentiation
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Differentiation of hBMSCs after 7 d culture on PDMS and PEO-PDMS
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Molecular mechanosensors in osteocytes
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Cell Proliferation, Cell Biology Journal
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the Human Apical Papilla via the Processes of Mechanosensing and Mechanotransduction
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
ACS Biomaterials Science & Engineering
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Stiffened fibre-like microenvironment based on patterned equidistant micropillars directs chondrocyte hypertrophy - ScienceDirect
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Assessing the combined effect of surface topography and substrate rigidity in human bone marrow stem cell cultures - Ribeiro - 2022 - Engineering in Life Sciences - Wiley Online Library
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Substrate Stiffness and Composition Specifically Direct Differentiation of Induced Pluripotent Stem Cells

© 2014-2024 evergreenrecruitment.co.uk. All rights reserved.